A Variable Time Step Method for an Age-Dependent Population Model with Nonlinear Diffusion
نویسنده
چکیده
We propose a method for solving a model of age-dependent population diffusion with random dispersal. This method, unlike previous methods, allows for variable time steps and independent age and time discretizations. We use a moving age discretization that transforms the problem to a coupled system of parabolic equations. The system is then solved by backward differences in time and a Galerkin approximation in space; the equations that need to be solved at each step treat each age group separately. A priori L2 error estimates are obtained by an energy analysis. These estimates are superconvergent in the age variable. We present a postprocessing technique which capitalizes on the superconvergence.
منابع مشابه
A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملGalerkin Methods in Age and Space for a Population Model with Nonlinear Diffusion
We present Galerkin methods in both the age and space variables for an agedependent population undergoing nonlinear diffusion. The methods presented are a generalization of methods, where the approximation space in age is the space of piecewise constant functions. In this paper, we allow the use of discontinuous piecewise polynomial subspaces of L2 as the approximation space in age. As in the p...
متن کاملAn algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures
In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 37 شماره
صفحات -
تاریخ انتشار 2000